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Abstract. Antisymmetric fusions of theZn Belavin model with integrable open boundary
conditions are studied. The centre of the corresponding operator algebra, the Sklyanin
determinant, is constructed. We prove that the transfer matrices of the fusion hierarchies mutually
commute. Utilizing the factorizedL operators, this commuting family is expressed as mutually
commuting difference operators acting on a function space. This gives Ruijsenaars–Macdonald-
type commuting difference operators, which describe the conservation laws of an integrable
system.

1. Introduction

In two-dimensional classical statistical mechanics, the commuting transfer matrices play
an important role because they ensure the exact solvability of the system. For periodic
boundary condition, given anR-matrix which is a solution of the Yang–Baxter equation
(YBE) [1, 2], and anL operator which naturally arises as the row-to-row transfer matrix,
one can derive the commutativity of the transfer matrices by taking the trace in the
fundamental relationRLL = LLR [3, 4]. Recently, there has been increasing interest
in the study of two-dimensional statistical models or integrable quantum field theory with
open boundary conditions [5–12]. With open boundary conditions, besides the YBE one
has to use the reflection equation (RE) [13, 14] (or boundary YBE) to obtain the commuting
family of transfer matrices. In studying two-dimensional integrable models, the so-called
fusion procedure has often been used to generate some new integrable models based on
the elementary model [15–17]. The corresponding fused transfer matrices of the fusion
hierarchies also form a one-parameter commutative family.

TheZn Belavin model [18, 19] is a generalization of Baxter’s eight-vertex model. Its
reflection matrixK− and dual reflection matrixK+ with integrable boundary conditions were
given in [9, 20]. Inspired by Bazhanovet al [21] and using the intertwiner of theZn Belavin
model and along with theA(1)n face model given by Jimboet al [22, 23], the factorized
L(u) operator for theZn symmetricR-matrix was constructed [24–26]. Utilizing this
factorizedL(u) operator, we can express the hierarchies of the commuting transfer matrix
of the antisymmetric fused model as difference operators; these may also be considered as
Ruijsenaars–Macdonald-type operators [27–30]. One of these operators can be chosen as

0305-4470/98/285911+13$19.50c© 1998 IOP Publishing Ltd 5911



5912 Bo-Yu Hou et al

the quantum Hamiltonian of an integrable dynamic system. Our work is an extension of
Hasegawa’s work in [31]. Although, because of the complication of the reflection matrix
K− and dual reflection matrixK+, the result we obtained is not reduced to the simple form
as Hasegawa did for the periodic boundary condition. However, these difference operators
can indeed be related to an integrable dynamic system.

An integrablen-dimensional dynamic system hasn independent quantities including
the Hamiltonian which are in involution. Recently, the well known integrable Calogero–
Sutherland–Moser-type models have become revitalized (e.g. see [29–37] and references
therein). One of them is the Ruijsenaars–Scheider (RS) model [30] which can be related to
theZn Belavin model [31] and elliptic quantum groups [33] in two-dimensional statistics.
The quantum Hamiltonian of the RS model can be seen as one of the transfer matrices
of a commuting family{tm}, the members of which act on a function space as difference
operators. In this construction, the boundary conditions are chosen to be periodic. In this
paper, we antisymmetrically fuse theZn Belavin model with an open boundary and relate the
transfer matrices of the fused model to Ruijsenaars–Macdonald-type difference operators.
In a similar way to that used in [31] and [33], our hierarchy of the commuting family{tm}
and the Ruijsenaars–Macdonald difference operators of [27–30] also describe the symmetry
of an integrable system. In fact, we can choose one of these operators as the Hamiltonian of
the system. The approach used is different from that in [34], where Hikami gave different
RS type models from open boundaries.

The outline of the paper is as follows. In section 2 we introduce theZn Belavin model,
its reflection matrix in the open boundary condition and some notation used in this paper. In
section 3 the fusions of theR-matrices,K-matrices andT operators are presented, and the
algebraic centre of the operator algebraT (u) is constructed. In section 4, we prove that the
transfer matrices of the antisymmetric fusedZn Belavin model form a commuting family. In
section 5, after reviewing the factorizedL operators, we express the fused transfer matrices
in section 5 as difference operators acting on a function space, which describe the symmetry
of the integrable system given in section 6, concluding with a short discussion in section 7.

2. Zn Belavin model with open boundary conditions

In two-dimensional statistical mechanics, theZn Belavin model is an exactly solvable lattice
model withZn symmetry. Letg andh be n × n matrices with elementsgij = ωiδij and
hij = δi+1,j respectively, herei, j ∈ Zn, (n > 1), andω = exp( 2iπ

n
). For a pair of given

integers,α = (α1, α2) ∈ Gn = Zn⊗Zn, let us defineIα = Iα1α2 = gα2hα1. Consider a space
V = V1⊗ V2⊗ · · · ⊗ Vm andI (j)α = I ⊗ · · · ⊗ Iα ⊗ · · · ⊗ I , Iα is at thej th site. Then the
Zn symmetric BelavinR-matrix is

Rjk(u) =
∑
α∈Gn

Wα(u)I
(j)
α ⊗ (I−1

α )(k). (1)

Here

Wα(u) ≡ 1

n

σα(u+ w
n
)

σα(
w
n
)

σα(u) = θ
[ 1

2 + α1
n

1
2 + α2

n

]
(u, τ )

andw andτ are fixed parameters of the model. The Jacobi theta functionθ

[
a

b

]
(u, τ ) is

characterized bya, b ∈ R:

θ

[
a

b

]
(u, τ ) =

∑
m∈Z

exp{iπ(m+ a)2τ + 2iπ(m+ a)(u+ b)}.
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This R-matrix isZn ⊗ Zn symmetric in the sense that

I (j)α ⊗ I (k)α Rjk(u)(I
−1
α )(j) ⊗ (I−1

α )(k) = Rjk(u). (2)

It also satisfies the YBE:

R12(u1− u2)R13(u1)R23(u2) = R23(u2)R13(u1)R12(u1− u2) (3)

initial condition

R12(0) = P12 (4)

unitarity

R12(u)R21(−u) = ρ(u)id (5)

and cross-unitarity

R
t1
12(u)R

t1
21(−u− nw) = ρ̃(u)id (6)

where

ρ(u) = σ0(u+ w)σ0(u− w)
σ 2

0 (w)
ρ̃(u) = σ0(u)σ0(−u− nw)

σ 2
0 (w)

ti denotes transposition in theith space,Pjk is the permutation operator acting on thej th
and kth spaces. In the framework of the quantum inverse-scattering method, there is an
j

Lh(u) operator which is defined on the tensor product space of thej th auxiliary spaceVj
and the local quantum spaceh. It satisfies

R12(u1− u2)
1
Lh(u1)

2
Lh(u2) =

2
Lh(u2)

1
Lh(u1)R12(u1− u2). (7)

Utilizing equation (7) repeatedly, we can have the row-to-row monodromy matrix
j

T (u)

defined onVj ⊗ (h1⊗ · · · ⊗ hN):

Tj (u) =
j

LhN (u) . . .
j

Lh1(u) (8)

which satisfies

R12(u1− u2)T1(u1)T2(u2) = T2(u2)T1(u1)R12(u1− u2). (9)

Under periodic boundary conditions, the trace ofT (u) over the auxiliary space,τ(u) =
trV T (u), gives the commuting transfer matrix depending on the spectral parameteru:

[τ(u1), τ (u2)] = 0. (10)

Under open boundary conditions, the integrable system is given by recalling the
reflection equation (RE) besides the YBE:

R12(u1− u2)K
−
1 (u1)R21(u1+ u2)K

−
2 (u2) = K−2 (u2)R12(u1+ u2)K

−
1 (u1)R21(u1− u2)

(11)

and the dual RE

R12(−u1+ u2)K
+
1 (u1)R21(−u1− u2− nw)K+2 (u2)

= K+2 (u2)R12(−u1− u2− nw)K+1 (u1)R21(−u1+ u2) (12)

which was proposed by Cherednik [13] and Sklyanin [14]. HereK−(u) andK+(u) are the
reflection matrix and dual reflection matrix respectively. Comparing (11) with (12), we can
see that there is an isomorphism betweenK+(u) andK−(u):

K−(u)→ K+(u) = K−(−u− 1
2nw).
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From (1) and (11), the reflection matrixK−(u) of theZn Belavin model is given by [9, 20],

K(u) = K0(u)K0(0) K0(u) ≡ 1

n

∑
α∈Gn

W̄2α(u, c)ω
2α1α2I2α

W̄2α(u, c) ≡ σ2α(u+ c)
σ2α(c)

c arbitrary parameter.

(13)

DefineT (u) = T (u)K−(u)T −1(−u). Using equations (11) and (9) and

R12(u1− u2)T
−1

2 (u2)T
−1

1 (u1) = T −1
1 (u1)T

−1
2 (u2)R12(u1− u2) (14)

whereT −1(u)T (u) = I ⊗ id, we can prove thatT (u) also satisfies the reflection equation

R12(u1− u2)T1(u1)R21(u1+ u2)T2(u2) = T2(u2)R12(u1+ u2)T1(u1)R21(u1− u2). (15)

Sklyanin [14] has shown that the transfer matrix defined by

t (u) = trK+(u)T (u)
= trK+(u)T (u)K−(u)T −1(−u) (16)

forms a one-parameter commutative family

[t (u1), t (u2)] = 0.

3. Antisymmetric fusion

Using the fusion procedure, some new integrable models may be generated based on the
elementary model [40, 41]. For theZn Belavin model, the antisymmetrically fusedR-
matrices are defined as

R〈l1〉ā(u) =
l∏

j=1

Rl−j+1,ā(u+ lw − jw)P−l (17)

Ra〈l̄1̄〉(u) =
l∏

j=1

Raj̄ (u+ w − jw)P−l (18)

Ra〈1̄l̄〉(u) =
l∏

j=1

Ra,l−j+1(u− jw + lw)P−l (19)

R〈1l〉ā(u) =
l∏

j=1

Rjā(u+ w − jw)P−l (20)

which are matrices of the spaceV1 ⊗ · · · ⊗ Vl ⊗ Va. P−l is the antisymmetric projector
operator on the spaceV ⊗l

P−l =
1

l!

∑
p∈Sl

sgn(p)p̂

p̂(ei1 ⊗ ei2 ⊗ · · · ⊗ eil ) = eip(1) ⊗ eip(2) ⊗ · · · ⊗ eip(l) .
(21)

Sl denote the symmetric group realized as the group of permutationsp of the set{1, 2, . . . , l},
and

sgn(p) =
{

1 p is even permutation

−1 p is odd permutation.
(22)
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Hereafter, the order of the operators after
∏
i is understood to be

k∏
i=1

Af(i) = Af(1)Af (2) . . . Af (k).

We can also fuse theR〈l1〉a(u) as follows to obtain matrices of the spaceV1 ⊗ · · · ⊗
Vl ⊗ V1̄⊗ · · · ⊗ Vm̄:

R〈l1〉〈m̄1̄〉(u) =
m∏
j=1

R〈l1〉j̄ (u− jw + w)P−m̄ =
l∏
i=1

Rl−i+1,〈m̄1̄〉(u+ lw − jw)P−l

R〈1l〉〈1̄m̄〉(u) =
m∏
j=1

R〈1l〉m−j+1(u+mw − jw)P−m̄ =
l∏
i=1

Ri〈1̄m̄〉(u− iw + w)P−l

R〈1l〉〈m̄1̄〉(u) =
m∏
j=1

R〈1l〉j̄ (u− jw + w)P−m̄ =
l∏
i=1

Ri〈m̄1̄〉(u− iw + w)P−l

R〈l1〉〈1̄m̄〉(u) =
m∏
j=1

R〈l1〉m−j+1(u+ jw − w)P−m̄ =
m∏
i=1

Rl−i+1,〈1̄m̄〉(u+ iw − w)P−l .

(23)

These fusedR-matrices satisfy the fused YBE

R〈ab〉〈c̄d̄〉R〈ab〉〈p̄q̄〉R〈cd〉〈p̄q̄〉 = R〈cd〉〈p̄q̄〉R〈ab〉〈p̄q̄〉R〈ab〉〈c̄d̄〉 (24)

the fused unitarity

R〈l1〉〈m̄1̄〉(u)R〈m̄1̄〉〈l1〉(−u) = g(u− v)P−l ⊗ P−m (25)

R〈1̄m̄〉〈1l〉(u)R〈1l〉〈1̄m̄〉(−u) = g(u− v)P−l ⊗ P−m̄ (26)

and the fused crossing unitarity

R
t1̄...tm̄

〈1̄m̄〉〈l1〉(−u− nw)R
t1̄...tm̄

〈l1〉〈1̄m̄〉(u) = g̃(u)P−m̄ ⊗ P−l (27)

R
t1...tl

〈1l〉〈m̄1̄〉(−u− nw)R
t1...tl

〈m̄1̄〉〈1l〉(u) = g̃(u)P−m̄ ⊗ P−l (28)

here,g(u) =∏l
i=1

∏m
j=1 ρ(u+ iw − jw), and g̃(u) =∏l

i=1

∏m
j=1 ρ̃(u+ iw + jw − 2w).

The fusedT (u) are defined as

T〈l1〉(u) =
l∏
i=1

Tl−i+1(u+ lw − iw)P−l

T −1
〈l1〉(−u) =

l∏
i=1

T −1
l−i+1(−u− lw + iw)P−l

(29)

where P−l is the antisymmetric projector of the auxiliary spaces. The fused
T〈l1〉(u)(T −1

〈l1〉(−u)) satisty the following fused Yang–Baxter relation in view of (9),

R〈m̄1̄〉〈l1〉(v − u)T〈m̄1̄〉(v)T〈l1〉(u) = T〈l1〉(u)T〈m̄1̄〉(v)R〈m̄1̄〉〈l1〉(v − u)
R〈1̄m̄〉〈1l〉(u− v)T −1

〈l1〉(−u)T −1
〈m̄1̄〉(−v) = T −1

〈m̄1̄〉(−v)T −1
〈l1〉(−u)R〈1̄m̄〉〈1l〉(u− v)

T −1
〈m̄1̄〉(−v)R〈l1〉〈1̄m̄〉(u+ v)T〈l1〉(u) = T〈l1〉(u)R〈l1〉〈1̄m̄〉(u+ v)T −1

〈m̄1̄〉(−v).
(30)
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For boundary matricesK−(u) and K+(u), we define the following fused boundary
matrices:

K−〈l1〉(u) =
l∏
i=1

[ i−1∏
j=1

Rl−i+1,l−j+1(2u+ (2l − i − j)w)
]
K−l−i+1(u+ (l − i)w)P−l

K+〈l1〉(u) =
l∏
i=1

K+i (u+ (i − 1)w)

[ l−i∏
j=1

Ri+j,i(−2u− (2i + j − 2)w − nw)
]
P−l .

(31)

Now, we will prove thatK−〈l1〉(u) andK+〈l1〉(u) satisfy

K−〈l1〉(u) = P−l K−〈l1〉(u) (32)

K+〈l1〉(u) = P−l K+〈l1〉(u). (33)

First from the fact [40, 41] thatR12(−w) = P−12A, hereP−12 = 1
2(1−P12), A is an invertible

matrix, we have

Rl...21(−w) ≡
l−1∏
j=1

l∏
i=j+1

Rij (−(i − j)w)

=
l−1∏
j=1

R〈j+1,l〉j (−w) = P−l B ′. (34)

B ′ is an invertible matrix. Then

LHS of (32)=
l−2∏
i=1

Rl−i+1,〈l−i+2,l〉(2u+ (2l − 2i + 1)w)K−l−i+1(u+ (l − i)w)

×R2〈3l〉(2u+ 3w)K−2 (u+ w)R1〈3l〉(2u+ 2w)R12(2u+ w)K−1 (u)

×R21(−w)R〈3l〉1(−2w)
l−1∏
j=2

R〈j+1,l〉j (−w)B ′−1

=
l−2∏
i=1

Rl−i+1,〈l−i+2,l〉(2u+ (2l − 2i + 1)w)K−l−i+1(u+ (l − i)w)

×R2〈3l〉(2u+ 3w)R1〈3l〉(2u+ 2w)K−2 (u+ w)R12(2u+ w)K−1 (u)

×R21(−w)R〈3l〉1(−2w)
l−1∏
j=2

R〈j+1,l〉j (−w)B ′−1.

Using RE(11), we have

LHS of (32)=
l−2∏
i=1

Rl−i+1,〈l−i+2,l〉(2u+ (2l − 2i + 1)w)K−l−i+1(u+ (l − i)w)

×R2〈3l〉(2u+ 3w)R1〈3l〉(2u+ 2w)R12(−w)K−1 (u)R21(2u+ w)

×K−2 (u+ w)R〈3l〉1(−2w)
l−1∏
j=2

R〈j+1,l〉j (−w)B ′−1.

By YBE (24) this becomes

LHS of (32)= R12(−w)
l−2∏
i=1

Rl−i+1,〈l−i+2,l〉(2u+ (2l − 2i + 1)w)K−l−i+1(u+ (l − i)w)
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×R1〈3l〉(2u+ 2w)K−1 (u)R2〈3l〉(2u+ 3w)R21(2u+ w)

×K−2 (u+ w)R〈3l〉1(−2w)
l−1∏
j=2

R〈j+1,l〉j (−w)B ′−1.

In this way, we can move theK−1 (u) to the left of the otherK−j (u) (j 6= 1) one by one,
and obtain

LHS of (32)= R1〈l2〉(−w)K−1 (u)R〈l2〉1(w)

×
l−1∏
i=1

Rl−i+1,〈l−i+2,l〉(2u+ (2l − 2i + 1)w)K−l−i+1(u+ (l − i)w)

×
l−1∏
j=2

R〈j+1,l〉j (−w)B ′−1.

Repeating this procedure, we have

LHS of (32)=
l∏
i=1

Rl−i+1,〈l−i+2,l〉(−w)
l∏

j=1

K−j (u+ (j − 1)w)R〈j+1,l〉j (2u+ (2j − 1)w)

= P−l
l∏
i=1

Rl−i+1,〈l−i+2,l〉(−w)

×
l∏

j=1

K−j (u+ (j − 1)w)R〈j+1,l〉j (2u+ (2j − 1)w).

Here, we use
l∏
i=1

Rl−i+1,〈l−i+2,l〉(−w) = Rl...1(−w) = P−l B ′

= P−l Rl...1(−w)
and obtain

LHS of (32)= P−l
l∏
i=1

Rl−i+1,〈l−i+2,l〉(2u+ (2l − 2i + 1)w)K−l−i+1(u+ (l − i)w)P−l
= RHS of (32).

Then a tedious but straightforward calculation similar to that used in the proof of
equation (32) leads to the following fused RE

R〈m̄1̄〉〈l1〉(v − u)K−〈m̄1̄〉(v)R〈l1〉〈1̄m̄〉(u+ v)K−〈l1〉(u)
= K−〈l1〉(u)R〈m̄1̄〉〈1l〉(u+ v)K−〈m̄1̄〉(v)R〈1l〉〈1̄m̄〉(v − u) (35)

and fused dual RE

K+〈l1〉(u)R〈1̄m̄〉〈l1〉(−u− v − nw)K+〈m̄1̄〉(v)R〈l1〉〈m̄1̄〉(u− v)
= R〈1̄m̄〉〈1l〉(u− v)K+〈m̄1̄〉(v)R〈1l〉〈m̄1̄〉(−u− v − nw)K+〈l1〉(u). (36)

DefineT〈l1〉(u) ≡ T〈l1〉(u)K−〈l1〉(u)T −1
〈l1〉(−u), equations (30) and (35), it is straightforward

to show

R〈m1〉〈l1〉(v − u)T〈m1〉(v)R〈l1〉〈1m〉(u+ v)T〈l1〉(u)
= T〈l1〉(u)R〈m1〉〈1l〉(u+ v)T〈m1〉(v)R〈1l〉〈1m〉(v − u) (37)
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which is similar to equation (35). Whenl = n, the Sklyanin determinantS detT (u) for
operatorT〈n1〉(u) is defined as

S detT (u) = T〈n1〉(u) = P−n T〈n1〉(u) (38)

which is the algebraic centre of the operator algebraT (u). That is

[T (v), S detT (u)] = 0. (39)

To prove this, first we must show

R1̄〈n1〉(u) = ξ(u)I ⊗ P−n (40)

hereξ(u) is a scalar function depending onu. Indeed, recall thatP−n is a one-dimensional
projection inV ⊗n, R1̄〈n1〉(u) may be written asU ⊗ P−n acting onV̄ ⊗ V ⊗n. On the other
hand, due to theZn symmetry of equation (2), we have

Iα ⊗ I⊗nR1̄〈n1〉(u)I
−1
α ⊗ I⊗n = P−n I ⊗ (I−1

α )⊗n
n∏
j=1

R1̄j (u+ (1− j)w)I ⊗ I⊗nα P−n

= P−n
n∏
j=1

R1̄j (u+ (1− j)w)P−n
= R1̄〈n1〉. (41)

SoU = ξ(u)I . In the same way, one can write

R〈1n〉1̄(u) = ξ(u)P−n ⊗ I
R〈n1〉1̄(u) = η(u)P−n ⊗ I
R1̄〈1n〉(u) = η(u)I ⊗ P−n .

Here, η(u) is also a scalar function depending onu. Now let m = 1 and l = n as in
equation (37), we have

ξ(v − u)P−n T1̄(v)η(u+ v)P−n T〈n1〉(u) = T〈n1〉(u)η(u+ v)P−n T1̄(v)ξ(v − u)P−n . (42)

So T1̄(v)P
−
n T〈n1〉(u) = P−n T〈n1〉(u)T1̄(v) which proves (39).

4. Commuting family

In this section, we shall show the fused operators

tm(u) ≡ tr1...m K
+
〈m1〉(u)T〈m1〉(u)K−〈m1〉(u)T

−1
〈m1〉(−u)

= tr1...m K
+
〈m1〉(u)T〈m1〉(u) (16 m 6 n) (43)

form a commuting family.
Given 16 m, l 6 n,

tm(v)tl(u) = tr1̄...m̄ K
+tm̄...t1̄
〈m̄1̄〉 (v)T tm̄...t1̄〈m̄1̄〉 (u)tr1...lK

+
〈l1〉(u)T〈l1〉(u)

= tr1̄...m̄ tr1...l K
+tm̄...t1̄
〈m̄1̄〉 (v)K+〈l1〉(u)T

tm̄...t1̄

〈m̄1̄〉 T〈l1〉(u)
inserting the cross-unitarity (27)

tm(v)tl(u) = 1

g̃ml(u+ v) tr1̄...m̄ tr1...l K
+tm̄...t1̄
〈m̄1̄〉 (v)K+〈l1〉(u)

×Rt1̄...tm̄〈1̄m̄〉〈l1〉(−u− v − nw)R
t1̄...tm̄

〈l1〉〈1̄m̄〉(u+ v)T
tm̄...t1̄

〈m̄1̄〉 (v)T〈l1〉(u)

= 1

g̃ml(u+ v) tr1̄...m̄ tr1...l [K
+
〈l1〉(u)R〈1̄m̄〉〈l1〉(−u− v − nw)K+〈m̄1̄〉(v)]

t1̄...tm̄

×[T〈m̄1̄〉(v)R〈l1〉〈1̄m̄〉(u+ v)T〈l1〉(u)]t1̄...tm̄ .
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Due to tr(AtBt ) = tr(AB), we have

tm(v)tl(u) = 1

g̃ml(u+ v) tr1̄...m̄ tr1...l [K
+
〈l1〉(u)R〈1̄m̄〉〈l1〉(−u− v − nw)K+〈m̄1̄〉(v)

×T〈m̄1̄〉(v)R〈l1〉〈1̄m̄〉(u+ v)T〈l1〉(u)].
Inserting the unitarity (25), we have

tm(v)tl(u) = 1

g̃ml(u+ v)gml(u− v) tr1̄...m̄ tr1...l [K
+
〈l1〉(u)R〈1̄m̄〉〈l1〉(−u− v − nw)K+〈m̄1̄〉(v)

×R〈l1〉〈m̄1̄〉(u− v)R〈m̄1̄〉〈l1〉(v − u)T〈m̄1̄〉(v)R〈l1〉〈1̄m̄〉(u+ v)T〈l1〉(u)].
Applying the fused RE (36) and (37) this becomes

tm(v)tl(u) = 1

g̃ml(u+ v)gml(u− v) tr1̄...m̄ tr1...l [R〈1̄m̄〉〈1l〉(u− v)K+〈m̄1̄〉(v)

×R〈1l〉〈m̄1̄〉(−u− v − nw)K+〈l1〉(u)T〈l1〉(u)R〈m̄1̄〉〈1l〉(u+ v)
×T〈m̄1̄〉(v)R〈1l〉〈1̄m̄〉(v − u)].

With the help of unitarity (26), this becomes

tm(v)tl(u) = 1

g̃ml(u+ v) tr1̄...m̄ tr1...l [K
+
〈m̄1̄〉(v)R〈1l〉〈m̄1̄〉(−u− v − nw)K+〈l1〉(u)

×T〈l1〉(u)R〈m̄1̄〉〈1l〉(u+ v)T〈m̄1̄〉(v)].

Apply the transpositiont1 . . . tl , and use cross-unitarity (28), we finally have

tm(v)tl(u) = 1

g̃ml(u+ v) tr1̄...m̄ tr1...l [K
+
〈m̄1̄〉(v)K

+t1...tl
〈l1〉 (u)R

t1...tl

〈1l〉〈m̄1̄〉(−u− v − nw)

×Rt1...tl〈m̄1̄〉〈1l〉(u+ v)T
t1...tl
〈l1〉 (u)T〈m̄1̄〉(v)]

= tr1̄...m̄ tr1...l [K
+
〈m̄1̄〉(v)K

+t1...tl
〈l1〉 (u)T t1...tl〈l1〉 (u)T〈m̄1̄〉(v)]

= tr1...l K
+tl ...t1
〈l1〉 (u)T tl ...t1〈l1〉 (u) tr1̄...m̄ K

+
〈m̄1̄〉(v)T〈m̄1̄〉(v)

= tl(u)tm(v).

5. Difference operator expression

To relate the commuting operatorstm with the difference operators, we use the factorizedL

operator in [23, 31], which is involved in the intertwiner of face–vertex model. The details
can be found in [21–26].

Let a, b ∈ Z⊗n, the bases ofZ⊗n, consist of

ei = (0, . . .0, 1, 0, . . .0) 06 i 6 n− 1. (44)

We call (a, b) an admissible pair ifa − b = ei . For theZn Belavin model, Jimboet al
(1988) introduced the following intertwiner

φba(u) = (φba0(u), φ
b
a1(u), . . . φ

b
an−1(u))

t

a = (m0, . . . , mn−1).
(45)

Here t means transposition, and

φbai(u) ≡
{
θ(i)(u+ nwm̄k) if a − b = ek
0 otherwise

θ(i)(u) = θ
[ 1

2 − i
n

1
2

]
(u, nτ)

(46)
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wherem̄i = mi− 1
n

∑
l ml+λi , and{λi} is a set of generic numbers. According to Bazhanov

et al [21, 42], one can find two vectors

φ̄ba (u) = (φ̄b0
a (u), . . . , φ̄

bn−1
a (u))

φ̃ba (u) = (φ̃b0
a (u), . . . , φ̃

bn−1
a (u)) if (ab) is admissible

(47)

such that ∑
i

φ̄a−ek,ia (u)φ
a−ej ,i
a (u) = δjk∑

i

φ̄a−ei ,ja (u)φa−ei ,ka (u) = δjk (48)∑
i

φ̃
a,i
a+ek (u)φ

a
a+ej ,i (u) = δjk∑

i

φ̃
a,j
a+ei (u)φ

a
a+ei ,k(u) = δjk. (49)

DefineLji (u) ≡
∑

k 0kφ
a
a+ek,i (u + δ)φ̃

a,j
a+ek (u), where the difference operator0k is defined

as

0kf (a) = f (a − ek)0k. (50)

One can show thatLji (u) satisfies equation (7). The inverse operators ofL
j

i (u) are defined
by

L−1(δ|u)ji =
n∑
k=1

0−kφ
a−ek
a,i (u)φ̄a−ek,ja (u+ δ).

Utilizing equations (48)–(49), it is straightforward to prove

L−(δ|u)L(δ|u) = L(δ|u)L−(δ|u) = id

and∑
k,l

Rklij (u2− u1)
2
L

−1

(δ| − u2)
j ′
l

1
L

−1

(δ| − u1)
i ′
k

=
∑
k,l

1
L

−1

(δ| − u1)
k
i

2
L

−1

(δ| − u2)
l
jR

i ′j ′
kl (u2− u1). (51)

Let f (a) be a function onZ⊗n, we define the actions ofL andL−1 operators onf (a)
as

(L(δ|u)ji f )(a) =
n∑
k=1

0kφ
a
a+ek,i (u+ δ)φ̃

a,j
a+ek (u)f (a)

=
n∑
k=1

φ
a−ek
a,i (u+ δ)φ̃a−ek,ja (u)f (a + ek)

(L−1(δ|u)ji f )(a) =
n∑
k=1

0−kφ
a−ek
a,i (u)φ̄a−ek,ja (u+ δ)f (a)

=
n∑
k=1

φaa+ek,i (u)φ̄
a,j
a+ek (u+ δ)f (a − ek).

(52)
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Let T (u) = L(u), from the definition oftm (43), the action oftm on f (a) is

(tmf )(a) =
∑
i,j,k,l

K+〈m1〉(u)
l1...lm
i1...im

K−〈m1〉(u)
j1...jm
k1...km

L−1(δ| − u− (m− 1)w)imjm

. . . L−1(δ| − u)i1j1
L(δ|u+ (m− 1)w)kmlm . . . L(δ|u)k1

l1
f (a). (53)

This set of difference operators{tm} forms a commutative family of the Macdonald type.

6. The Hamiltonian of integrable model

Any difference operator of the commuting family{tm} can be chosen as the Hamiltonian
of an integrable model with the conservative family{tm}. This is similar to the RS [34]
model. In fact, if we use periodic boundary conditions for theZn Belavin model, we can
obtain the RS model and the degenerate form gives the Calogero–Moser (CM) model. Let
us discuss this in more detail with open boundary conditions. We selectt1, which is the
simplest in form, as is the Hamiltonian. For the reflection matrix given in (13), after some
lengthy but straightforward calculation we have, forδ = 0,

t1(u) =
∑
µν

0−µ0νF (1)µν (a, u)F
(2)
µν (a, u) (54)

where

F (1)µν (a, u) =
1

n

∑
γ

W̄2γ (u, c)A2γ

F (2)µν (a, u) =
1

n

∑
γ

W̄2γ

(
−u− nw

2
, c
)
B2γ

A2γ (a, u)µν = exp

(
−2iπ

2γ1

n
(γ2− 1)

)
×σ(2γ1,2γ2+1)[−u+ w(2− n− η)+ n−3

2 + w(āµ + āν − δµν)]
σ0[u+ wη − w(1− n)− n−1

2 ]

×
∏
j 6=ν

σ(2γ1,2γ2+1)[w(āj + āµ − δµj + 1)]

σ0[w(āj − āν − δµj + δµν)]

B2γ (a, u)µν = exp

(
−2iπ

2γ1

n
(γ2− 1)

)
×σ(2γ1,2γ2+1)[u− wη + n−3

2 + w(āµ + āν − δµν + 1))

σ0(u− wη + n−1
2n )

×
∏
j 6=µ

σ(2γ1,2γ2+1)[w(āj + āν − δµν + 1)]

σ0[w(āj − āµ)]

āj ≡ aj − 1

n

∑
k

ak + λk
∑
k

λk = η.

(55)

If we choosec = ετ + c′ in (13) (ε � 1
n

) and make the spectral parameteru tend to−i∞,
the trigonometric limitτ → i∞ gives

t1(u)→
∑
µν

0νe
iπnw(aν+λν)

∏
j 6=ν

1

sin(πw(aj − aν))0−µe−iπnw(aµ+λmu)
∏
k 6=µ

1

sin(πw(ak − aµ)) .

(56)
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In quantum mechanics, momenta operators,p̂µ = h̄
i
∂
∂xµ

, act on functionf (x) =
f (x0, . . . , xn−1) as

exp

(
h̄

i

∂

∂xµ

)
f (x0, . . . , xn−1) = f

(
x0, . . . , xµ + h̄

i
, . . .

)
exp

(
h̄

i

∂

∂xµ

)
. (57)

Comparing this with (50), we may replace0−µ by exp( h̄i
∂
∂xµ
), 0µ by exp(− h̄i ∂

∂xµ
) and

iw(ai + λi) by xi . The corresponding quantum Hamiltonian is

H(p̂, q) =
∑
µ,ν

e−p̂ν+πnxν
∏
i:i 6=ν

1

sinh[π(xi − xν)] ep̂µ−πnxµ
∏
j :j 6=µ

1

sinh[π(xj − xµ)] . (58)

Here p̂ν = h̄
i
∂
∂qν

. This suggests an integrable system which has{tm} as its conservative
quantities. For other reflection matrices or for taking other limits, we can also construct
integrable models.

7. Discussion

In this paper, we study the antisymmetric fusion of theZn Belavin model with the open
boundary condition. We give theR-matrices, reflection matricesK and L operators
of the antisymmetric fusion hierarchies. The Sklyanin determinant, which is the centre
of the operator algebra of theZn Belavin model with the open boundary condition, is
constructed. We also prove that the transfer matricestm of the fusion hierarchies mutually
commute. Utilizing the factorizedL operators, we express the commuting transfer matrices
as mutually commuting difference operators acting on a function space, which are related to
Ruijsenaars–Macdonald-type operators. These commuting operators describe the symmetry
of an integrable model similar to the RS–CM model.

Owing to the complication of theR- andK-matrices intm, equation (53) could not
be simplified to a simple form as was done in the periodic boundary condition [31]. In
Hasegawa [31] studied the fusedZn Belavin model with periodic boundary conditions,
extended the equivalence between Macdonald’s operators and Ruijsenaars’ one to the present
elliptic case, namely between the commuting difference operators and relativistic elliptic CM
system [34]. Our commuting difference operators are obtained from the fusedZn Belavin
model with an open boundary condition. We suggest that our results are related to the
boundary relativistic elliptic CM system.
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