Ruijsenaars-Macdonald-type difference operators from ${ }^{Z_{n}}$ Belavin model with open boundary conditions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 315911
(http://iopscience.iop.org/0305-4470/31/28/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.122
The article was downloaded on 02/06/2010 at 06:57

Please note that terms and conditions apply.

Ruijsenaars-Macdonald-type difference operators from Z_{n} Belavin model with open boundary conditions

Bo-Yu Hou \ddagger, Kang-Jie Shi $\dagger \ddagger$, Yan-Shen Wang $\dagger §$ and Liu Zhao $\dagger \ddagger$
\dagger CCAST(World Laboratory), Academia Sinica, PO Box 8730, Beijing 100080, People's Republic of China
\ddagger Institute of Morden Physics, Northwest University, P O Box 105, Xi’an 710069, People’s Republic of China
§ Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China

Received 18 September 1997, in final form 17 December 1997

Abstract

Antisymmetric fusions of the Z_{n} Belavin model with integrable open boundary conditions are studied. The centre of the corresponding operator algebra, the Sklyanin determinant, is constructed. We prove that the transfer matrices of the fusion hierarchies mutually commute. Utilizing the factorized L operators, this commuting family is expressed as mutually commuting difference operators acting on a function space. This gives Ruijsenaars-Macdonaldtype commuting difference operators, which describe the conservation laws of an integrable system.

1. Introduction

In two-dimensional classical statistical mechanics, the commuting transfer matrices play an important role because they ensure the exact solvability of the system. For periodic boundary condition, given an R-matrix which is a solution of the Yang-Baxter equation (YBE) [1, 2], and an L operator which naturally arises as the row-to-row transfer matrix, one can derive the commutativity of the transfer matrices by taking the trace in the fundamental relation $R L L=L L R$ [3, 4]. Recently, there has been increasing interest in the study of two-dimensional statistical models or integrable quantum field theory with open boundary conditions [5-12]. With open boundary conditions, besides the YBE one has to use the reflection equation (RE) $[13,14]$ (or boundary YBE) to obtain the commuting family of transfer matrices. In studying two-dimensional integrable models, the so-called fusion procedure has often been used to generate some new integrable models based on the elementary model [15-17]. The corresponding fused transfer matrices of the fusion hierarchies also form a one-parameter commutative family.

The Z_{n} Belavin model $[18,19]$ is a generalization of Baxter's eight-vertex model. Its reflection matrix K^{-}and dual reflection matrix K^{+}with integrable boundary conditions were given in [9, 20]. Inspired by Bazhanov et al [21] and using the intertwiner of the Z_{n} Belavin model and along with the $A_{n}^{(1)}$ face model given by Jimbo et al [22, 23], the factorized $L(u)$ operator for the Z_{n} symmetric R-matrix was constructed [24-26]. Utilizing this factorized $L(u)$ operator, we can express the hierarchies of the commuting transfer matrix of the antisymmetric fused model as difference operators; these may also be considered as Ruijsenaars-Macdonald-type operators [27-30]. One of these operators can be chosen as
the quantum Hamiltonian of an integrable dynamic system. Our work is an extension of Hasegawa's work in [31]. Although, because of the complication of the reflection matrix K^{-}and dual reflection matrix K^{+}, the result we obtained is not reduced to the simple form as Hasegawa did for the periodic boundary condition. However, these difference operators can indeed be related to an integrable dynamic system.

An integrable n-dimensional dynamic system has n independent quantities including the Hamiltonian which are in involution. Recently, the well known integrable Calogero-Sutherland-Moser-type models have become revitalized (e.g. see [29-37] and references therein). One of them is the Ruijsenaars-Scheider (RS) model [30] which can be related to the Z_{n} Belavin model [31] and elliptic quantum groups [33] in two-dimensional statistics. The quantum Hamiltonian of the RS model can be seen as one of the transfer matrices of a commuting family $\left\{t_{m}\right\}$, the members of which act on a function space as difference operators. In this construction, the boundary conditions are chosen to be periodic. In this paper, we antisymmetrically fuse the Z_{n} Belavin model with an open boundary and relate the transfer matrices of the fused model to Ruijsenaars-Macdonald-type difference operators. In a similar way to that used in [31] and [33], our hierarchy of the commuting family $\left\{t_{m}\right\}$ and the Ruijsenaars-Macdonald difference operators of [27-30] also describe the symmetry of an integrable system. In fact, we can choose one of these operators as the Hamiltonian of the system. The approach used is different from that in [34], where Hikami gave different RS type models from open boundaries.

The outline of the paper is as follows. In section 2 we introduce the Z_{n} Belavin model, its reflection matrix in the open boundary condition and some notation used in this paper. In section 3 the fusions of the R-matrices, K-matrices and T operators are presented, and the algebraic centre of the operator algebra $\mathcal{T}(u)$ is constructed. In section 4, we prove that the transfer matrices of the antisymmetric fused Z_{n} Belavin model form a commuting family. In section 5 , after reviewing the factorized L operators, we express the fused transfer matrices in section 5 as difference operators acting on a function space, which describe the symmetry of the integrable system given in section 6 , concluding with a short discussion in section 7 .

2. Z_{n} Belavin model with open boundary conditions

In two-dimensional statistical mechanics, the Z_{n} Belavin model is an exactly solvable lattice model with Z_{n} symmetry. Let g and h be $n \times n$ matrices with elements $g_{i j}=\omega^{i} \delta_{i j}$ and $h_{i j}=\delta_{i+1, j}$ respectively, here $i, j \in Z_{n},(n>1)$, and $\omega=\exp \left(\frac{2 \mathrm{i} \pi}{n}\right)$. For a pair of given integers, $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in G_{n}=Z_{n} \otimes Z_{n}$, let us define $I_{\alpha}=I_{\alpha_{1} \alpha_{2}}=g^{\alpha_{2}} h^{\alpha_{1}}$. Consider a space $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m}$ and $I_{\alpha}^{(j)}=I \otimes \cdots \otimes I_{\alpha} \otimes \cdots \otimes I, I_{\alpha}$ is at the j th site. Then the Z_{n} symmetric Belavin R-matrix is

$$
\begin{equation*}
R_{j k}(u)=\sum_{\alpha \in G_{n}} W_{\alpha}(u) I_{\alpha}^{(j)} \otimes\left(I_{\alpha}^{-1}\right)^{(k)} \tag{1}
\end{equation*}
$$

Here

$$
W_{\alpha}(u) \equiv \frac{1}{n} \frac{\sigma_{\alpha}\left(u+\frac{w}{n}\right)}{\sigma_{\alpha}\left(\frac{w}{n}\right)} \quad \sigma_{\alpha}(u)=\theta\left[\begin{array}{l}
\frac{1}{2}+\frac{\alpha_{1}}{n} \\
\frac{1}{2}+\frac{\alpha_{2}}{n}
\end{array}\right](u, \tau)
$$

and w and τ are fixed parameters of the model. The Jacobi theta function $\theta\left[\begin{array}{l}a \\ b\end{array}\right](u, \tau)$ is characterized by $a, b \in R$:

$$
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](u, \tau)=\sum_{m \in Z} \exp \left\{\mathrm{i} \pi(m+a)^{2} \tau+2 \mathrm{i} \pi(m+a)(u+b)\right\}
$$

This R-matrix is $Z_{n} \otimes Z_{n}$ symmetric in the sense that

$$
\begin{equation*}
I_{\alpha}^{(j)} \otimes I_{\alpha}^{(k)} R_{j k}(u)\left(I_{\alpha}^{-1}\right)^{(j)} \otimes\left(I_{\alpha}^{-1}\right)^{(k)}=R_{j k}(u) \tag{2}
\end{equation*}
$$

It also satisfies the YBE:

$$
\begin{equation*}
R_{12}\left(u_{1}-u_{2}\right) R_{13}\left(u_{1}\right) R_{23}\left(u_{2}\right)=R_{23}\left(u_{2}\right) R_{13}\left(u_{1}\right) R_{12}\left(u_{1}-u_{2}\right) \tag{3}
\end{equation*}
$$

initial condition

$$
\begin{equation*}
R_{12}(0)=P_{12} \tag{4}
\end{equation*}
$$

unitarity

$$
\begin{equation*}
R_{12}(u) R_{21}(-u)=\rho(u) \mathrm{id} \tag{5}
\end{equation*}
$$

and cross-unitarity

$$
\begin{equation*}
R_{12}^{t_{1}}(u) R_{21}^{t_{1}}(-u-n w)=\tilde{\rho}(u) \mathrm{id} \tag{6}
\end{equation*}
$$

where

$$
\rho(u)=\frac{\sigma_{0}(u+w) \sigma_{0}(u-w)}{\sigma_{0}^{2}(w)} \quad \tilde{\rho}(u)=\frac{\sigma_{0}(u) \sigma_{0}(-u-n w)}{\sigma_{0}^{2}(w)}
$$

t_{i} denotes transposition in the i th space, $P_{j k}$ is the permutation operator acting on the j th and k th spaces. In the framework of the quantum inverse-scattering method, there is an $\stackrel{j}{L}_{h}(u)$ operator which is defined on the tensor product space of the j th auxiliary space V_{j} and the local quantum space h. It satisfies

$$
\begin{equation*}
R_{12}\left(u_{1}-u_{2}\right) \stackrel{1}{L_{h}}\left(u_{1}\right) \stackrel{2}{L}_{h}\left(u_{2}\right)=\stackrel{2}{L}_{h}\left(u_{2}\right) \stackrel{1}{L_{h}}\left(u_{1}\right) R_{12}\left(u_{1}-u_{2}\right) . \tag{7}
\end{equation*}
$$

Utilizing equation (7) repeatedly, we can have the row-to-row monodromy matrix $\stackrel{j}{T}(u)$ defined on $V_{j} \otimes\left(h_{1} \otimes \cdots \otimes h_{N}\right)$:

$$
\begin{equation*}
T_{j}(u)=\stackrel{j}{L}_{h_{N}}(u) \ldots \stackrel{j}{L}_{h_{1}}(u) \tag{8}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
R_{12}\left(u_{1}-u_{2}\right) T_{1}\left(u_{1}\right) T_{2}\left(u_{2}\right)=T_{2}\left(u_{2}\right) T_{1}\left(u_{1}\right) R_{12}\left(u_{1}-u_{2}\right) . \tag{9}
\end{equation*}
$$

Under periodic boundary conditions, the trace of $T(u)$ over the auxiliary space, $\tau(u)=$ $\operatorname{tr}_{V} T(u)$, gives the commuting transfer matrix depending on the spectral parameter u :

$$
\begin{equation*}
\left[\tau\left(u_{1}\right), \tau\left(u_{2}\right)\right]=0 \tag{10}
\end{equation*}
$$

Under open boundary conditions, the integrable system is given by recalling the reflection equation (RE) besides the YBE:

$$
\begin{equation*}
R_{12}\left(u_{1}-u_{2}\right) K_{1}^{-}\left(u_{1}\right) R_{21}\left(u_{1}+u_{2}\right) K_{2}^{-}\left(u_{2}\right)=K_{2}^{-}\left(u_{2}\right) R_{12}\left(u_{1}+u_{2}\right) K_{1}^{-}\left(u_{1}\right) R_{21}\left(u_{1}-u_{2}\right) \tag{11}
\end{equation*}
$$

and the dual RE

$$
\begin{align*}
& R_{12}\left(-u_{1}+u_{2}\right) K_{1}^{+}\left(u_{1}\right) R_{21}\left(-u_{1}-u_{2}-n w\right) K_{2}^{+}\left(u_{2}\right) \\
& \quad=K_{2}^{+}\left(u_{2}\right) R_{12}\left(-u_{1}-u_{2}-n w\right) K_{1}^{+}\left(u_{1}\right) R_{21}\left(-u_{1}+u_{2}\right) \tag{12}
\end{align*}
$$

which was proposed by Cherednik [13] and Sklyanin [14]. Here $K^{-}(u)$ and $K^{+}(u)$ are the reflection matrix and dual reflection matrix respectively. Comparing (11) with (12), we can see that there is an isomorphism between $K^{+}(u)$ and $K_{-}(u)$:

$$
K^{-}(u) \rightarrow K^{+}(u)=K^{-}\left(-u-\frac{1}{2} n w\right) .
$$

From (1) and (11), the reflection matrix $K_{-}(u)$ of the Z_{n} Belavin model is given by [9, 20],

$$
\begin{array}{lc}
K(u)=K_{0}(u) K_{0}(0) & K_{0}(u) \equiv \frac{1}{n} \sum_{\alpha \in G_{n}} \bar{W}_{2 \alpha}(u, c) \omega^{2 \alpha_{1} \alpha_{2}} I_{2 \alpha} \tag{13}\\
\bar{W}_{2 \alpha}(u, c) \equiv \frac{\sigma_{2 \alpha}(u+c)}{\sigma_{2 \alpha}(c)} & c \text { arbitrary parameter. }
\end{array}
$$

Define $\mathcal{T}(u)=T(u) K^{-}(u) T^{-1}(-u)$. Using equations (11) and (9) and

$$
\begin{equation*}
R_{12}\left(u_{1}-u_{2}\right) T_{2}^{-1}\left(u_{2}\right) T_{1}^{-1}\left(u_{1}\right)=T_{1}^{-1}\left(u_{1}\right) T_{2}^{-1}\left(u_{2}\right) R_{12}\left(u_{1}-u_{2}\right) \tag{14}
\end{equation*}
$$

where $T^{-1}(u) T(u)=I \otimes \mathrm{id}$, we can prove that $\mathcal{T}(u)$ also satisfies the reflection equation

$$
\begin{equation*}
R_{12}\left(u_{1}-u_{2}\right) \mathcal{T}_{1}\left(u_{1}\right) R_{21}\left(u_{1}+u_{2}\right) \mathcal{T}_{2}\left(u_{2}\right)=\mathcal{T}_{2}\left(u_{2}\right) R_{12}\left(u_{1}+u_{2}\right) \mathcal{T}_{1}\left(u_{1}\right) R_{21}\left(u_{1}-u_{2}\right) . \tag{15}
\end{equation*}
$$

Sklyanin [14] has shown that the transfer matrix defined by

$$
\begin{align*}
t(u) & =\operatorname{tr} K^{+}(u) \mathcal{T}(u) \\
& =\operatorname{tr} K^{+}(u) T(u) K^{-}(u) T^{-1}(-u) \tag{16}
\end{align*}
$$

forms a one-parameter commutative family

$$
\left[t\left(u_{1}\right), t\left(u_{2}\right)\right]=0
$$

3. Antisymmetric fusion

Using the fusion procedure, some new integrable models may be generated based on the elementary model [40, 41]. For the Z_{n} Belavin model, the antisymmetrically fused R matrices are defined as

$$
\begin{align*}
& R_{\langle l 1 \backslash \bar{a}}(u)=\prod_{j=1}^{l} R_{l-j+1, \bar{a}}(u+l w-j w) P_{l}^{-} \tag{17}\\
& R_{a\langle\bar{l} \overline{1}\rangle}(u)=\prod_{j=1}^{l} R_{a \bar{j}}(u+w-j w) P_{l}^{-} \tag{18}\\
& R_{a\langle\overline{1} \bar{l}\rangle}(u)=\prod_{j=1}^{l} R_{a, \overline{l-j+1}}(u-j w+l w) P_{l}^{-} \tag{19}\\
& R_{\langle 1 l \backslash \bar{a}}(u)=\prod_{j=1}^{l} R_{j \bar{a}}(u+w-j w) P_{l}^{-} \tag{20}
\end{align*}
$$

which are matrices of the space $V_{1} \otimes \cdots \otimes V_{l} \otimes V_{a} . P_{l}^{-}$is the antisymmetric projector operator on the space $V^{\otimes l}$

$$
\begin{align*}
& P_{l}^{-}=\frac{1}{l!} \sum_{p \in S_{l}} \operatorname{sgn}(p) \hat{p} \tag{21}\\
& \hat{p}\left(e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{l}}\right)=e_{i_{p(1)}} \otimes e_{i_{p(2)}} \otimes \cdots \otimes e_{i_{p(l)}} .
\end{align*}
$$

S_{l} denote the symmetric group realized as the group of permutations p of the set $\{1,2, \ldots, l\}$, and

$$
\operatorname{sgn}(p)= \begin{cases}1 & p \text { is even permutation } \tag{22}\\ -1 & p \text { is odd permutation }\end{cases}
$$

Hereafter, the order of the operators after \prod_{i} is understood to be

$$
\prod_{i=1}^{k} A_{f(i)}=A_{f(1)} A_{f(2)} \ldots A_{f(k)}
$$

We can also fuse the $R_{\langle l 1\rangle a}(u)$ as follows to obtain matrices of the space $V_{1} \otimes \cdots \otimes$ $V_{l} \otimes V_{\overline{1}} \otimes \cdots \otimes V_{\bar{m}}:$

$$
\begin{align*}
& R_{\langle l 1\rangle\langle\bar{m} \overline{1}\rangle}(u)=\prod_{j=1}^{m} R_{\langle l 1\rangle \bar{j}}(u-j w+w) P_{\bar{m}}^{-}=\prod_{i=1}^{l} R_{l-i+1,\langle\bar{m} \overline{1}\rangle}(u+l w-j w) P_{l}^{-} \\
& R_{\langle 1 l\rangle\rangle \overline{1} \bar{m}\rangle}(u)=\prod_{j=1}^{m} R_{\langle 1 l\rangle \overline{m-j+1}}(u+m w-j w) P_{\bar{m}}^{-}=\prod_{i=1}^{l} R_{i\langle\overline{1} \bar{m}\rangle}(u-i w+w) P_{l}^{-} \tag{23}\\
& R_{\langle 1 l\rangle\langle\bar{m} \overline{1}\rangle}(u)=\prod_{j=1}^{m} R_{\langle 1 l\rangle \bar{j}}(u-j w+w) P_{\bar{m}}^{-}=\prod_{i=1}^{l} R_{i\langle\bar{m} \overline{1}\rangle}(u-i w+w) P_{l}^{-} \\
& R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}(u)=\prod_{j=1}^{m} R_{\langle l 11| \overline{m-j+1}}(u+j w-w) P_{\bar{m}}^{-}=\prod_{i=1}^{m} R_{l-i+1,\langle\overline{1} \bar{m}\rangle}(u+i w-w) P_{l}^{-} .
\end{align*}
$$

These fused R-matrices satisfy the fused YBE

$$
\begin{equation*}
R_{\langle a b\rangle\langle\bar{c} \bar{d}\rangle} R_{\langle a b\rangle\langle\bar{p} \bar{q}\rangle} R_{\langle c d\rangle\langle\bar{p} \bar{q}\rangle}=R_{\langle c d\rangle\langle\bar{p} \bar{q}\rangle} R_{\langle a b\rangle\langle\bar{p} \bar{q}\rangle} R_{\langle a b\rangle\langle\bar{c} \bar{d}\rangle} \tag{24}
\end{equation*}
$$

the fused unitarity

$$
\begin{align*}
& R_{\langle l 1\rangle\langle\bar{m} \overline{1}\rangle}(u) R_{\langle\bar{m} \overline{1}\rangle\langle l l\rangle}(-u)=g(u-v) P_{l}^{-} \otimes P_{m}^{-} \tag{25}\\
& R_{\langle\overline{1} \bar{m}\rangle\langle 1 l\rangle}(u) R_{\langle 1 l\rangle\langle\overline{1} \bar{m}\rangle}(-u)=g(u-v) P_{l}^{-} \otimes P_{\bar{m}}^{-} \tag{26}
\end{align*}
$$

and the fused crossing unitarity

$$
\begin{align*}
& R_{\langle\overline{1} \bar{m} \bar{m}\rangle\langle l \mid\rangle}^{t_{1} t_{\bar{m}}}(-u-n) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}^{t_{1} \cdots t_{\bar{m}}}(u)=\tilde{g}(u) P_{\bar{m}}^{-} \otimes P_{l}^{-} \tag{27}\\
& R_{\langle 11\rangle\langle\bar{m} \overline{1}\rangle}^{t_{1} \ldots t_{l}}(-u-n w) R_{\langle\bar{m} \overline{1}\rangle\langle 1 l\rangle}^{t_{1} \cdots t_{l}}(u)=\tilde{g}(u) P_{\bar{m}}^{-} \otimes P_{l}^{-} \tag{28}
\end{align*}
$$

here, $g(u)=\prod_{i=1}^{l} \prod_{j=1}^{m} \rho(u+i w-j w)$, and $\tilde{g}(u)=\prod_{i=1}^{l} \prod_{j=1}^{m} \tilde{\rho}(u+i w+j w-2 w)$.
The fused $T(u)$ are defined as

$$
\begin{align*}
& T_{\langle l 1\rangle}(u)=\prod_{i=1}^{l} T_{l-i+1}(u+l w-i w) P_{l}^{-} \tag{29}\\
& T_{\langle l 1\rangle}^{-1}(-u)=\prod_{i=1}^{l} T_{l-i+1}^{-1}(-u-l w+i w) P_{l}^{-}
\end{align*}
$$

where P_{l}^{-}is the antisymmetric projector of the auxiliary spaces. The fused $T_{\langle l 1\rangle}(u)\left(T_{\langle l 1\rangle}^{-1}(-u)\right)$ satisty the following fused Yang-Baxter relation in view of (9),

$$
\begin{align*}
& R_{\langle\bar{m} \overline{1}\rangle\langle l 1\rangle}(v-u) T_{\langle\bar{m} \overline{1}\rangle}(v) T_{\langle l 1\rangle}(u)=T_{\langle l 1\rangle}(u) T_{\langle\bar{m} \overline{1}\rangle}(v) R_{\langle\bar{m} \overline{1}\rangle\langle l 1\rangle}(v-u) \\
& R_{\langle\overline{1} \overline{1}\rangle\langle 1 l\rangle}(u-v) T_{\langle l 1\rangle}^{-1}(-u) T_{\langle\bar{m} \overline{1}\rangle}^{-1}(-v)=T_{\langle\bar{m} \overline{1}\rangle}^{-1}(-v) T_{\langle\langle 1\rangle}^{-1}(-u) R_{\langle\overline{1} \bar{m}\rangle\langle 1 l\rangle}(u-v) \tag{30}\\
& T_{\langle\bar{m} \overline{1}\rangle}^{-1}(-v) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}(u+v) T_{\langle l 1\rangle}(u)=T_{\langle l 1\rangle}(u) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}(u+v) T_{\langle\bar{m} \overline{1}\rangle}^{-1}(-v) .
\end{align*}
$$

For boundary matrices $K^{-}(u)$ and $K^{+}(u)$, we define the following fused boundary matrices:

$$
\begin{align*}
& K_{\langle l 1\rangle}^{-}(u)=\prod_{i=1}^{l}\left[\prod_{j=1}^{i-1} R_{l-i+1, l-j+1}(2 u+(2 l-i-j) w)\right] K_{l-i+1}^{-}(u+(l-i) w) P_{l}^{-} \\
& K_{\langle l 1\rangle}^{+}(u)=\prod_{i=1}^{l} K_{i}^{+}(u+(i-1) w)\left[\prod_{j=1}^{l-i} R_{i+j, i}(-2 u-(2 i+j-2) w-n w)\right] P_{l}^{-} . \tag{31}
\end{align*}
$$

Now, we will prove that $K_{\langle l 1\rangle}^{-}(u)$ and $K_{\langle l 1\rangle}^{+}(u)$ satisfy

$$
\begin{align*}
& K_{\langle l 1\rangle}^{-}(u)=P_{l}^{-} K_{\langle l 1\rangle}^{-}(u) \tag{32}\\
& K_{\langle l 1\rangle}^{+}(u)=P_{l}^{-} K_{\langle l 1\rangle}^{+}(u) . \tag{33}
\end{align*}
$$

First from the fact [40, 41] that $R_{12}(-w)=P_{12}^{-} A$, here $P_{12}^{-}=\frac{1}{2}\left(1-P_{12}\right), A$ is an invertible matrix, we have

$$
\begin{align*}
R_{l \ldots 21}(-w) & \equiv \prod_{j=1}^{l-1} \prod_{i=j+1}^{l} R_{i j}(-(i-j) w) \\
& =\prod_{j=1}^{l-1} R_{\langle j+1, l\rangle j}(-w)=P_{l}^{-} B^{\prime} . \tag{34}
\end{align*}
$$

B^{\prime} is an invertible matrix. Then

$$
\begin{aligned}
\text { LHS of (32) }= & \prod_{i=1}^{l-2} R_{l-i+1,\langle l-i+2, l\rangle}(2 u+(2 l-2 i+1) w) K_{l-i+1}^{-}(u+(l-i) w) \\
& \times R_{2\langle 3 l\rangle}(2 u+3 w) K_{2}^{-}(u+w) R_{1\langle 3 l\rangle}(2 u+2 w) R_{12}(2 u+w) K_{1}^{-}(u) \\
& \times R_{21}(-w) R_{\langle 3 l\rangle 1}(-2 w) \prod_{j=2}^{l-1} R_{\langle j+1, l\rangle j}(-w) B^{\prime-1} \\
= & \prod_{i=1}^{l-2} R_{l-i+1,\langle l-i+2, l\rangle}(2 u+(2 l-2 i+1) w) K_{l-i+1}^{-}(u+(l-i) w) \\
& \times R_{2\langle 3 l\rangle}(2 u+3 w) R_{1\langle 3 l\rangle}(2 u+2 w) K_{2}^{-}(u+w) R_{12}(2 u+w) K_{1}^{-}(u) \\
& \times R_{21}(-w) R_{\langle 3 l\rangle\rangle}(-2 w) \prod_{j=2}^{l-1} R_{\langle j+1, l\rangle j}(-w) B^{\prime-1}
\end{aligned}
$$

Using RE(11), we have

$$
\begin{aligned}
\text { LHS of }(32)= & \prod_{i=1}^{l-2} R_{l-i+1,\langle l-i+2, l\rangle}(2 u+(2 l-2 i+1) w) K_{l-i+1}^{-}(u+(l-i) w) \\
& \times R_{2\langle 3 l\rangle}(2 u+3 w) R_{1\langle 3 l\rangle}(2 u+2 w) R_{12}(-w) K_{1}^{-}(u) R_{21}(2 u+w) \\
& \times K_{2}^{-}(u+w) R_{\langle 3 l\rangle 1}(-2 w) \prod_{j=2}^{l-1} R_{\langle j+1, l\rangle j}(-w) B^{\prime-1} .
\end{aligned}
$$

By YBE (24) this becomes
LHS of $(32)=R_{12}(-w) \prod_{i=1}^{l-2} R_{l-i+1,\langle l-i+2, l\rangle}(2 u+(2 l-2 i+1) w) K_{l-i+1}^{-}(u+(l-i) w)$

$$
\begin{aligned}
& \times R_{1\langle 3 l\rangle}(2 u+2 w) K_{1}^{-}(u) R_{2\langle 3 l\rangle}(2 u+3 w) R_{21}(2 u+w) \\
& \times K_{2}^{-}(u+w) R_{\langle 3 l\rangle 1}(-2 w) \prod_{j=2}^{l-1} R_{\langle j+1, l\rangle j}(-w) B^{\prime-1} .
\end{aligned}
$$

In this way, we can move the $K_{1}^{-}(u)$ to the left of the other $K_{j}^{-}(u)(j \neq 1)$ one by one, and obtain
LHS of $(32)=R_{1\langle l 2\rangle}(-w) K_{1}^{-}(u) R_{\langle l 2\rangle 1}(w)$

$$
\begin{aligned}
& \times \prod_{i=1}^{l-1} R_{l-i+1,\langle l-i+2, l\rangle}(2 u+(2 l-2 i+1) w) K_{l-i+1}^{-}(u+(l-i) w) \\
& \times \prod_{j=2}^{l-1} R_{\langle j+1, l\rangle j}(-w) B^{\prime-1}
\end{aligned}
$$

Repeating this procedure, we have

$$
\begin{aligned}
\operatorname{LHS} \text { of }(32)= & \prod_{i=1}^{l} R_{l-i+1,\langle l-i+2, l\rangle}(-w) \prod_{j=1}^{l} K_{j}^{-}(u+(j-1) w) R_{\langle j+1, l\rangle j}(2 u+(2 j-1) w) \\
= & P_{l}^{-} \prod_{i=1}^{l} R_{l-i+1,\langle l-i+2, l\rangle}(-w) \\
& \times \prod_{j=1}^{l} K_{j}^{-}(u+(j-1) w) R_{\langle j+1, l\rangle j}(2 u+(2 j-1) w) .
\end{aligned}
$$

Here, we use

$$
\begin{aligned}
\prod_{i=1}^{l} R_{l-i+1,\langle l-i+2, l\rangle}(-w) & =R_{l \ldots 1}(-w)=P_{l}^{-} B^{\prime} \\
& =P_{l}^{-} R_{l \ldots 1}(-w)
\end{aligned}
$$

and obtain
LHS of (32) $=P_{l}^{-} \prod_{i=1}^{l} R_{l-i+1,\langle l-i+2, l\rangle}(2 u+(2 l-2 i+1) w) K_{l-i+1}^{-}(u+(l-i) w) P_{l}^{-}$

$$
=\text { RHS of }(32)
$$

Then a tedious but straightforward calculation similar to that used in the proof of equation (32) leads to the following fused RE

$$
\begin{align*}
& R_{\langle\bar{m} \overline{1}\rangle\langle l 1\rangle}(v-u) K_{\langle\bar{m} \overline{1}\rangle}^{-}(v) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}(u+v) K_{\langle l 1\rangle}^{-}(u) \\
& \quad=K_{\langle l 1\rangle\rangle}^{-}(u) R_{\langle\bar{m} \overline{1}\rangle\langle 1 l\rangle}(u+v) K_{\langle\bar{m} \overline{1}\rangle}^{-}(v) R_{\langle 1 l\rangle\rangle \overline{1} \bar{m}\rangle}(v-u) \tag{35}
\end{align*}
$$

and fused dual RE

$$
\begin{align*}
& K_{\langle l 1\rangle}^{+}(u) R_{\langle\overline{1} \bar{m}\rangle\langle l 1\rangle}(-u-v-n w) K_{\langle\bar{m} \overline{1}\rangle}^{+}(v) R_{\langle l 1\rangle\langle\bar{m} \overline{1}\rangle}(u-v) \\
& \quad=R_{\langle\overline{1} \bar{m}\rangle\langle 11\rangle}(u-v) K_{\langle\bar{m} \overline{1}\rangle}^{+}(v) R_{\langle 11\rangle\langle\bar{m} \overline{1}\rangle}(-u-v-n w) K_{\langle l 1\rangle}^{+}(u) . \tag{36}
\end{align*}
$$

Define $\mathcal{T}_{\langle l 1\rangle}(u) \equiv T_{\langle l 1\rangle}(u) K_{\langle l 1\rangle}^{-}(u) T_{\langle l 1\rangle}^{-1}(-u)$, equations (30) and (35), it is straightforward to show

$$
\begin{align*}
& R_{\langle m 1\rangle\langle l 1\rangle}(v-u) \mathcal{T}_{\langle m 1\rangle}(v) R_{\langle l 1\rangle\langle 1 m\rangle}(u+v) \mathcal{T}_{\langle l 1\rangle}(u) \\
& \quad=\mathcal{T}_{\langle l 1\rangle}(u) R_{\langle m 1\rangle\langle 11\rangle}(u+v) \mathcal{T}_{\langle m 1\rangle}(v) R_{\langle 11\rangle\langle 1 m\rangle}(v-u) \tag{37}
\end{align*}
$$

which is similar to equation (35). When $l=n$, the Sklyanin determinant $S \operatorname{det} \mathcal{T}(u)$ for operator $\mathcal{T}_{\langle n 1\rangle}(u)$ is defined as

$$
\begin{equation*}
S \operatorname{det} \mathcal{T}(u)=\mathcal{T}_{\langle n 1\rangle}(u)=P_{n}^{-} \mathcal{T}_{\langle n 1\rangle}(u) \tag{38}
\end{equation*}
$$

which is the algebraic centre of the operator algebra $\mathcal{T}(u)$. That is

$$
\begin{equation*}
[\mathcal{T}(v), S \operatorname{det} \mathcal{T}(u)]=0 \tag{39}
\end{equation*}
$$

To prove this, first we must show

$$
\begin{equation*}
R_{\overline{1}\langle n 1\rangle}(u)=\xi(u) I \otimes P_{n}^{-} \tag{40}
\end{equation*}
$$

here $\xi(u)$ is a scalar function depending on u. Indeed, recall that $P_{\underline{n}}^{-}$is a one-dimensional projection in $V^{\otimes n}, R_{\overline{1}\langle n 1\rangle}(u)$ may be written as $U \otimes P_{n}^{-}$acting on $\bar{V} \otimes V^{\otimes n}$. On the other hand, due to the Z_{n} symmetry of equation (2), we have

$$
\begin{align*}
& I_{\alpha} \otimes I^{\otimes n} R_{\overline{1}\langle n 1\rangle}(u) I_{\alpha}^{-1} \otimes I^{\otimes n}=P_{n}^{-} I \otimes\left(I_{\alpha}^{-1}\right)^{\otimes n} \prod_{j=1}^{n} R_{\overline{1} j}(u+(1-j) w) I \otimes I_{\alpha}^{\otimes n} P_{n}^{-} \\
& \quad=P_{n}^{-} \prod_{j=1}^{n} R_{\overline{1} j}(u+(1-j) w) P_{n}^{-} \\
& \quad=R_{\overline{1}\langle n 1\rangle}^{-} \tag{41}
\end{align*}
$$

So $U=\xi(u) I$. In the same way, one can write

$$
\begin{aligned}
& R_{\langle 1 n\rangle \overline{1}}(u)=\xi(u) P_{n}^{-} \otimes I \\
& R_{\langle n 1\rangle \overline{1}}(u)=\eta(u) P_{n}^{-} \otimes I \\
& R_{\overline{1}\langle 1 n\rangle}(u)=\eta(u) I \otimes P_{n}^{-} .
\end{aligned}
$$

Here, $\eta(u)$ is also a scalar function depending on u. Now let $m=1$ and $l=n$ as in equation (37), we have
$\xi(v-u) P_{n}^{-} \mathcal{T}_{\overline{1}}(v) \eta(u+v) P_{n}^{-} \mathcal{T}_{\langle n 1\rangle}(u)=\mathcal{T}_{\langle n 1\rangle}(u) \eta(u+v) P_{n}^{-} \mathcal{T}_{\overline{1}}(v) \xi(v-u) P_{n}^{-}$.
So $\mathcal{T}_{\overline{1}}(v) P_{n}^{-} \mathcal{T}_{\langle n 1\rangle}(u)=P_{n}^{-} \mathcal{T}_{\langle n 1\rangle}(u) \mathcal{T}_{\overline{1}}(v)$ which proves (39).

4. Commuting family

In this section, we shall show the fused operators

$$
\begin{align*}
t_{m}(u) & \equiv \operatorname{tr}_{1 \ldots m} K_{\langle m 1\rangle}^{+}(u) T_{\langle m 1\rangle}(u) K_{\langle m 1\rangle}^{-}(u) T_{\langle m 1\rangle}^{-1}(-u) \\
& =\operatorname{tr}_{1 \ldots m} K_{\langle m 1\rangle}^{+}(u) \mathcal{T}_{\langle m 1\rangle}(u) \quad(1 \leqslant m \leqslant n) \tag{43}
\end{align*}
$$

form a commuting family.
Given $1 \leqslant m, l \leqslant n$,

$$
\begin{aligned}
t_{m}(v) t_{l}(u) & =\operatorname{tr}_{\overline{1} \ldots \bar{m}} K_{\langle\bar{m} \overline{1}\rangle}^{+t_{\overline{1}} \ldots t_{\overline{1}}}(v) \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}^{t_{\bar{m}} \ldots t_{\overline{1}}}(u) t r_{1 \ldots l} K_{\langle l 1\rangle}^{+}(u) \mathcal{T}_{\langle l 1\rangle}(u) \\
& =\operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l} K_{\langle\bar{m} \overline{1}\rangle}^{+t_{\overline{1}} \ldots t_{\overline{1}}}(v) K_{\langle l 1\rangle}^{+}(u) \mathcal{T}_{\langle\bar{m} \bar{i}\rangle}^{t_{\bar{m}} \ldots t_{\overline{1}}} \mathcal{T}_{\langle l 1\rangle}(u)
\end{aligned}
$$

inserting the cross-unitarity (27)

$$
\begin{aligned}
t_{m}(v) t_{l}(u)= & \frac{1}{\tilde{g}_{m l}(u+v)} \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l} K_{\langle\bar{m} \overline{1}\rangle}^{+t_{\bar{m}} \ldots t_{\overline{1}}}(v) K_{\langle l 1\rangle}^{+}(u) \\
& \times R_{\langle\overline{1} \bar{m}\rangle\langle l l\rangle}^{t_{\overline{1}} \ldots t_{\bar{m}}}(-u-v-n w) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}^{t_{\overline{1}} \ldots t_{\bar{m}}}(u+v) \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}^{t_{\bar{m}} \ldots t_{\overline{1}}}(v) \mathcal{T}_{\langle l 1\rangle}(u) \\
= & \frac{1}{\tilde{g}_{m l}(u+v)} \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l}\left[K_{\langle l 1\rangle}^{+}(u) R_{\langle\overline{1} \bar{m}\rangle\langle l 1\rangle}(-u-v-n w) K_{\langle\bar{m} \overline{1}\rangle}^{+}(v)\right]^{t_{\overline{1}} \ldots t_{\bar{m}}} \\
& \times\left[\mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}(u+v) \mathcal{T}_{\langle l 1\rangle}(u)\right]^{t_{\overline{1}} \ldots t_{\bar{m}}} .
\end{aligned}
$$

Due to $\operatorname{tr}\left(A^{t} B^{t}\right)=\operatorname{tr}(A B)$, we have

$$
\begin{aligned}
t_{m}(v) t_{l}(u)= & \frac{1}{\tilde{g}_{m l}(u+v)} \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l}\left[K_{\langle l 1\rangle}^{+}(u) R_{\langle\overline{1} \bar{m}\rangle\langle l 1\rangle}(-u-v-n w) K_{\langle\bar{m} \overline{1}\rangle}^{+}(v)\right. \\
& \left.\times \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}(u+v) \mathcal{T}_{\langle l 1\rangle}(u)\right] .
\end{aligned}
$$

Inserting the unitarity (25), we have

$$
\begin{aligned}
t_{m}(v) t_{l}(u)= & \frac{1}{\tilde{g}_{m l}(u+v) g_{m l}(u-v)} \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l}\left[K_{\langle l 1\rangle}^{+}(u) R_{\langle\overline{1} \bar{m}\rangle\langle l 1\rangle}(-u-v-n w) K_{\langle\bar{m} \overline{1}\rangle}^{+}(v)\right. \\
& \left.\times R_{\langle l 1\rangle\langle\bar{m} \overline{1}\rangle}(u-v) R_{\langle\bar{m} \overline{1}\rangle\langle l 1\rangle}(v-u) \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v) R_{\langle l 1\rangle\langle\overline{1} \bar{m}\rangle}(u+v) \mathcal{T}_{\langle l 1\rangle\rangle}(u)\right] .
\end{aligned}
$$

Applying the fused RE (36) and (37) this becomes

$$
\begin{aligned}
t_{m}(v) t_{l}(u)= & \frac{1}{\tilde{g}_{m l}(u+v) g_{m l}(u-v)} \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l}\left[R_{\langle\overline{1} \bar{m}\rangle\langle 1 l\rangle}(u-v) K_{\langle\bar{m} \overline{1}\rangle}^{+}(v)\right. \\
& \times R_{\langle 1 l\rangle\langle\bar{m} \overline{1}\rangle}(-u-v-n w) K_{\langle l 1\rangle}^{+}(u) \mathcal{T}_{\langle l 1\rangle}(u) R_{\langle\bar{m} \overline{1}\rangle\langle 1 l\rangle}(u+v) \\
& \left.\times \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v) R_{\langle 1 l\rangle\langle\overline{1} \bar{m}\rangle}(v-u)\right] .
\end{aligned}
$$

With the help of unitarity (26), this becomes

$$
\begin{aligned}
t_{m}(v) t_{l}(u)= & \frac{1}{\tilde{g}_{m l}(u+v)} \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l}\left[K_{\langle\bar{m} \overline{1}\rangle}^{+}(v) R_{\langle 1 l\rangle\langle\bar{m} \overline{1}\rangle}(-u-v-n w) K_{\langle l 1\rangle}^{+}(u)\right. \\
& \left.\times \mathcal{T}_{\langle l 1\rangle}(u) R_{\langle\bar{m} \overline{1}\rangle\langle 1\rangle\rangle}(u+v) \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v)\right] .
\end{aligned}
$$

Apply the transposition $t_{1} \ldots t_{l}$, and use cross-unitarity (28), we finally have

$$
\begin{aligned}
t_{m}(v) t_{l}(u)= & \frac{1}{\tilde{g}_{m l}(u+v)} \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l}\left[K_{\langle\bar{m} \overline{1}\rangle}^{+}(v) K_{\langle l 1\rangle}^{+t_{1} \ldots t_{l}}(u) R_{\langle 1 l\rangle\langle\bar{m} \overline{1}\rangle}^{t_{1} \ldots t_{l}}(-u-v-n w)\right. \\
& \left.\times R_{\langle\bar{m} \overline{1}\langle 1 l\rangle}^{t_{1} \ldots t_{l}}(u+v) \mathcal{T}_{\langle l 1\rangle}^{t_{1} \ldots t_{l}}(u) \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v)\right] \\
= & \operatorname{tr}_{\overline{1} \ldots \bar{m}} \operatorname{tr}_{1 \ldots l}\left[K_{\langle\bar{m} \overline{1}\rangle}^{+}(v) K_{\langle l 1\rangle}^{+t_{1} \ldots t_{l}}(u) \mathcal{T}_{\langle l 1\rangle}^{t_{1} \ldots t_{l}}(u) \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v)\right] \\
= & \operatorname{tr}_{1 \ldots l} K_{\langle\langle 1\rangle}^{+t_{1} \ldots t_{1}}(u) \mathcal{T}_{\langle l 1\rangle}^{t_{1} \ldots . l_{1}}(u) \operatorname{tr}_{\overline{1} \ldots \bar{m}} K_{\langle\bar{m} \overline{1}\rangle}^{+}(v) \mathcal{T}_{\langle\bar{m} \overline{1}\rangle}(v) \\
= & t_{l}(u) t_{m}(v) .
\end{aligned}
$$

5. Difference operator expression

To relate the commuting operators t_{m} with the difference operators, we use the factorized L operator in [23, 31], which is involved in the intertwiner of face-vertex model. The details can be found in [21-26].

Let $a, b \in Z^{\otimes n}$, the bases of $Z^{\otimes n}$, consist of

$$
\begin{equation*}
e_{i}=(0, \ldots 0,1,0, \ldots 0) \quad 0 \leqslant i \leqslant n-1 . \tag{44}
\end{equation*}
$$

We call (a, b) an admissible pair if $a-b=e_{i}$. For the Z_{n} Belavin model, Jimbo et al (1988) introduced the following intertwiner

$$
\begin{align*}
& \phi_{a}^{b}(u)=\left(\phi_{a 0}^{b}(u), \phi_{a 1}^{b}(u), \ldots \phi_{a n-1}^{b}(u)\right)^{\mathrm{t}} \tag{45}\\
& a=\left(m_{0}, \ldots, m_{n-1}\right) .
\end{align*}
$$

Here t means transposition, and

$$
\begin{align*}
\phi_{a i}^{b}(u) & \equiv \begin{cases}\theta^{(i)}\left(u+n w \bar{m}_{k}\right) & \text { if } a-b=e_{k} \\
0 & \text { otherwise }\end{cases} \tag{46}\\
\theta^{(i)}(u) & =\theta\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{n} \\
\frac{1}{2}
\end{array}\right](u, n \tau)
\end{align*}
$$

where $\bar{m}_{i}=m_{i}-\frac{1}{n} \sum_{l} m_{l}+\lambda_{i}$, and $\left\{\lambda_{i}\right\}$ is a set of generic numbers. According to Bazhanov et al [21, 42], one can find two vectors

$$
\begin{align*}
\bar{\phi}_{a}^{b}(u) & =\left(\bar{\phi}_{a}^{b 0}(u), \ldots, \bar{\phi}_{a}^{b n-1}(u)\right) \\
\tilde{\phi}_{a}^{b}(u) & =\left(\tilde{\phi}_{a}^{b 0}(u), \ldots, \tilde{\phi}_{a}^{b n-1}(u)\right) \quad \text { if }(a b) \text { is admissible } \tag{47}
\end{align*}
$$

such that

$$
\begin{align*}
& \sum_{i} \bar{\phi}_{a}^{a-e_{k}, i}(u) \phi_{a}^{a-e_{j}, i}(u)=\delta_{j k} \\
& \sum_{i} \bar{\phi}_{a}^{a-e_{i}, j}(u) \phi_{a}^{a-e_{i}, k}(u)=\delta_{j k} \tag{48}\\
& \sum_{i} \tilde{\phi}_{a+e_{k}}^{a, i}(u) \phi_{a+e_{j}, i}^{a}(u)=\delta_{j k} \\
& \sum_{i} \tilde{\phi}_{a+e_{i}}^{a, j}(u) \phi_{a+e_{i}, k}^{a}(u)=\delta_{j k} \tag{49}
\end{align*}
$$

Define $L_{i}^{j}(u) \equiv \sum_{k} \Gamma_{k} \phi_{a+e_{k}, i}^{a}(u+\delta) \tilde{\phi}_{a+e_{k}}^{a, j}(u)$, where the difference operator Γ_{k} is defined as

$$
\begin{equation*}
\Gamma_{k} f(a)=f\left(a-e_{k}\right) \Gamma_{k} \tag{50}
\end{equation*}
$$

One can show that $L_{i}^{j}(u)$ satisfies equation (7). The inverse operators of $L_{i}^{j}(u)$ are defined by

$$
L^{-1}(\delta \mid u)_{i}^{j}=\sum_{k=1}^{n} \Gamma_{-k} \phi_{a, i}^{a-e_{k}}(u) \bar{\phi}_{a}^{a-e_{k}, j}(u+\delta) .
$$

Utilizing equations (48)-(49), it is straightforward to prove

$$
L^{-}(\delta \mid u) L(\delta \mid u)=L(\delta \mid u) L^{-}(\delta \mid u)=\mathrm{id}
$$

and

$$
\begin{align*}
& \sum_{k, l} R_{i j}^{k l}\left(u_{2}-u_{1}\right) L^{-1}\left(\delta \mid-u_{2}\right)_{l}^{j^{\prime}} L^{-1}\left(\delta \mid-u_{1}\right)_{k}^{i^{\prime}} \\
&=\sum_{k, l} \stackrel{1}{L}^{-1}\left(\delta \mid-u_{1}\right)_{i}^{k} L^{-1}\left(\delta \mid-u_{2}\right)_{j}^{l} R_{k l}^{i^{\prime} j^{\prime}}\left(u_{2}-u_{1}\right) \tag{51}
\end{align*}
$$

Let $f(a)$ be a function on $Z^{\otimes n}$, we define the actions of L and L^{-1} operators on $f(a)$ as

$$
\begin{align*}
\left(L(\delta \mid u)_{i}^{j} f\right)(a) & =\sum_{k=1}^{n} \Gamma_{k} \phi_{a+e_{k}, i}^{a}(u+\delta) \tilde{\phi}_{a+e_{k}}^{a, j}(u) f(a) \\
& =\sum_{k=1}^{n} \phi_{a, i}^{a-e_{k}}(u+\delta) \tilde{\phi}_{a}^{a-e_{k}, j}(u) f\left(a+e_{k}\right) \tag{52}\\
\left(L^{-1}(\delta \mid u)_{i}^{j} f\right)(a) & =\sum_{k=1}^{n} \Gamma_{-k} \phi_{a, i}^{a-e_{k}}(u) \bar{\phi}_{a}^{a-e_{k}, j}(u+\delta) f(a) \\
& =\sum_{k=1}^{n} \phi_{a+e_{k}, i}^{a}(u) \bar{\phi}_{a+e_{k}}^{a, j}(u+\delta) f\left(a-e_{k}\right) .
\end{align*}
$$

Let $T(u)=L(u)$, from the definition of t_{m} (43), the action of t_{m} on $f(a)$ is

$$
\begin{align*}
\left(t_{m} f\right)(a)= & \sum_{i, j, k, l} K_{\langle m 1\rangle}^{+}(u)_{i_{1} \ldots i_{m}}^{l_{1} \ldots l_{m}} K_{\langle m 1\rangle}^{-}(u)_{k_{1} \ldots k_{m}}^{j_{1} \ldots j_{m}} L^{-1}(\delta \mid-u-(m-1) w)_{j_{m}}^{i_{m}} \\
& \ldots L^{-1}(\delta \mid-u)_{j_{1}}^{i_{1}} L(\delta \mid u+(m-1) w)_{l_{m}}^{k_{m}} \ldots L(\delta \mid u)_{l_{1}}^{k_{1}} f(a) \tag{53}
\end{align*}
$$

This set of difference operators $\left\{t_{m}\right\}$ forms a commutative family of the Macdonald type.

6. The Hamiltonian of integrable model

Any difference operator of the commuting family $\left\{t_{m}\right\}$ can be chosen as the Hamiltonian of an integrable model with the conservative family $\left\{t_{m}\right\}$. This is similar to the RS [34] model. In fact, if we use periodic boundary conditions for the Z_{n} Belavin model, we can obtain the RS model and the degenerate form gives the Calogero-Moser (CM) model. Let us discuss this in more detail with open boundary conditions. We select t_{1}, which is the simplest in form, as is the Hamiltonian. For the reflection matrix given in (13), after some lengthy but straightforward calculation we have, for $\delta=0$,

$$
\begin{equation*}
t_{1}(u)=\sum_{\mu \nu} \Gamma_{-\mu} \Gamma_{\nu} F_{\mu \nu}^{(1)}(a, u) F_{\mu \nu}^{(2)}(a, u) \tag{54}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{\mu \nu}^{(1)}(a, u)= \frac{1}{n} \sum_{\gamma} \bar{W}_{2 \gamma}(u, c) A_{2 \gamma} \\
& F_{\mu \nu}^{(2)}(a, u)= \frac{1}{n} \sum_{\gamma} \bar{W}_{2 \gamma}\left(-u-\frac{n w}{2}, c\right) B_{2 \gamma} \\
& A_{2 \gamma}(a, u)_{\mu \nu}= \exp \left(-2 \mathrm{i} \pi \frac{2 \gamma_{1}}{n}\left(\gamma_{2}-1\right)\right) \\
& \times \frac{\sigma_{\left(2 \gamma_{1}, 2 \gamma_{2}+1\right)}\left[-u+w(2-n-\eta)+\frac{n-3}{2}+w\left(\bar{a}_{\mu}+\bar{a}_{\nu}-\delta_{\mu \nu}\right)\right]}{\sigma_{0}\left[u+w \eta-w(1-n)-\frac{n-1}{2}\right]} \\
& \times \prod_{j \neq \nu} \frac{\sigma_{\left(2 \gamma_{1}, 2 \gamma_{2}+1\right)}\left[w\left(\bar{a}_{j}+\bar{a}_{\mu}-\delta_{\mu j}+1\right)\right]}{\sigma_{0}\left[w\left(\bar{a}_{j}-\bar{a}_{v}-\delta_{\mu j}+\delta_{\mu \nu}\right)\right]} \tag{55}\\
& B_{2 \gamma}(a, u)_{\mu \nu}= \exp \left(-2 \mathrm{i} \pi \frac{2 \gamma_{1}}{n}\left(\gamma_{2}-1\right)\right) \\
& \times \frac{\sigma_{\left(2 \gamma_{1}, 2 \gamma_{2}+1\right)}\left[u-w \eta+\frac{n-3}{2}+w\left(\bar{a}_{\mu}+\bar{a}_{\nu}-\delta_{\mu \nu}+1\right)\right)}{\sigma_{0}\left(u-w \eta+\frac{n-1}{2 n}\right)} \\
& \times \prod_{j \neq \mu} \frac{\sigma_{\left(2 \gamma_{1}, 2 \gamma_{2}+1\right)}\left[w\left(\bar{a}_{j}+\bar{a}_{v}-\delta_{\mu \nu}+1\right)\right]}{\sigma_{0}\left[w\left(\bar{a}_{j}-\bar{a}_{\mu}\right)\right]} \\
& \bar{a}_{j} \equiv a_{j}-\frac{1}{n} \sum_{k} a_{k}+\lambda_{k} \quad \sum_{k} \lambda_{k}=\eta .
\end{align*}
$$

If we choose $c=\epsilon \tau+c^{\prime}$ in (13) $\left(\epsilon \ll \frac{1}{n}\right)$ and make the spectral parameter u tend to $-\mathrm{i} \infty$, the trigonometric limit $\tau \rightarrow \mathrm{i} \infty$ gives
$t_{1}(u) \rightarrow \sum_{\mu \nu} \Gamma_{\nu} \mathrm{e}^{\mathrm{i} \pi n w\left(a_{\nu}+\lambda_{v}\right)} \prod_{j \neq \nu} \frac{1}{\sin \left(\pi w\left(a_{j}-a_{\nu}\right)\right)} \Gamma_{-\mu} \mathrm{e}^{-\mathrm{i} \pi n w\left(a_{\mu}+\lambda_{m u}\right)} \prod_{k \neq \mu} \frac{1}{\sin \left(\pi w\left(a_{k}-a_{\mu}\right)\right)}$.

In quantum mechanics, momenta operators, $\hat{p}_{\mu}=\frac{\hbar}{i} \frac{\partial}{\partial x_{\mu}}$, act on function $f(x)=$ $f\left(x_{0}, \ldots, x_{n-1}\right)$ as
$\exp \left(\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x_{\mu}}\right) f\left(x_{0}, \ldots, x_{n-1}\right)=f\left(x_{0}, \ldots, x_{\mu}+\frac{\hbar}{\mathrm{i}}, \ldots\right) \exp \left(\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x_{\mu}}\right)$.
Comparing this with (50), we may replace $\Gamma_{-\mu}$ by $\exp \left(\frac{\hbar}{i} \frac{\partial}{\partial x_{\mu}}\right), \Gamma_{\mu}$ by $\exp \left(-\frac{\hbar}{i} \frac{\partial}{\partial x_{\mu}}\right)$ and $i w\left(a_{i}+\lambda_{i}\right)$ by x_{i}. The corresponding quantum Hamiltonian is
$H(\hat{p}, q)=\sum_{\mu, \nu} \mathrm{e}^{-\hat{p}_{\nu}+\pi n x_{v}} \prod_{i: i \neq \nu} \frac{1}{\sinh \left[\pi\left(x_{i}-x_{\nu}\right)\right]} \mathrm{e}^{\hat{p}_{\mu}-\pi n x_{\mu}} \prod_{j: j \neq \mu} \frac{1}{\sinh \left[\pi\left(x_{j}-x_{\mu}\right)\right]}$.
Here $\hat{p}_{v}=\frac{\hbar}{i} \frac{\partial}{\partial q_{v}}$. This suggests an integrable system which has $\left\{t_{m}\right\}$ as its conservative quantities. For other reflection matrices or for taking other limits, we can also construct integrable models.

7. Discussion

In this paper, we study the antisymmetric fusion of the Z_{n} Belavin model with the open boundary condition. We give the R-matrices, reflection matrices K and L operators of the antisymmetric fusion hierarchies. The Sklyanin determinant, which is the centre of the operator algebra of the Z_{n} Belavin model with the open boundary condition, is constructed. We also prove that the transfer matrices t_{m} of the fusion hierarchies mutually commute. Utilizing the factorized L operators, we express the commuting transfer matrices as mutually commuting difference operators acting on a function space, which are related to Ruijsenaars-Macdonald-type operators. These commuting operators describe the symmetry of an integrable model similar to the RS-CM model.

Owing to the complication of the R - and K-matrices in t_{m}, equation (53) could not be simplified to a simple form as was done in the periodic boundary condition [31]. In Hasegawa [31] studied the fused Z_{n} Belavin model with periodic boundary conditions, extended the equivalence between Macdonald's operators and Ruijsenaars' one to the present elliptic case, namely between the commuting difference operators and relativistic elliptic CM system [34]. Our commuting difference operators are obtained from the fused Z_{n} Belavin model with an open boundary condition. We suggest that our results are related to the boundary relativistic elliptic CM system.

Acknowledgment

Y-SW thanks Professor Yi-Xin Chen for helpful discussions.

References

[1] Yang C N 1967 Phys. Rev. Lett. 191312
[2] Baxter B J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[3] Baxter R J 1972 Ann. Phys. 70193
[4] Takhtajan L A and Faddeev L D 1979 Russ. Math. Surv. 3411
[5] Kulish P P and Sklyanin E K 1991 J. Phys. A: Math. Gen. 24 L435
[6] Mezincescu L and Nepomechie R I 1991 Int. J. Mod. Phys. A 65231
[7] Mezincescu L and Nepomechie R I 1992 Int. J. Mod. Phys. A 75657
[8] de Vega H J and Gonzalez Ruiz A 1993 J. Phys. A: Math. Gen. 26 L519
[9] Hou B Y, Shi K Y, Fan H and Yang Z X 1995 Commun. Theor. Phys. 23163
[10] Yung C M and Batchelor M T 1995 Nucl. Phys. B 446461
[11] Jimbo M, Kedem R, Kojima T, Konno H and Miwa T 1995 Nucl. Phys. B 441437
[12] Ghoshal S and Zamolodchikov A 1994 Int. J. Mod. Phys. A 213841
[13] Cherednik I V 1984 Theor. Math. Phys. 61911
[14] Sklyanin E K 1988 J. Phys. A: Math. Gen. 212375
[15] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 5393
[16] Cherednik I V 1985 Funct. Anal. Appl. 1977
[17] Mezincescu L and Nepomechie R I 1992 J. Phys. A: Math. Gen. 252533
[18] Belavin A A 1981 Nucl. Phys. B 180189
[19] Richey M P and Tracy C A 1986 J. Stat. Phys. 42311
[20] Fan H, Hou B Y, Shi K J and Yang Z X 1995 Phys. Lett. A 200109
[21] Bazhanov V V, Kashaev R M, Mangazeev V V and Stroganov Yu G 1991 Commun. Math. Phys. 138393
[22] Jimbo M, Miwa T and Okado M 1988 Nucl. Phys. B 30074
[23] Hasegawa K and Yamada Y 1990 Phys. Lett. A 146387
[24] Quano Y H and Fujii A 1991 Mod. Phys. Lett. A 63635
[25] Quano Y H 1993 Mod. Phys. Lett. A 83363
[26] Hou B Y, Shi K J, Yang W L and Yang Z X 1993 Phys. Lett. A 17873
[27] Macdonald I G 1988 Actes Seminaire Lotharringen (Strasbourg: Inst. Rech. Math. Adv.) p 131
[28] Macdonald I G 1990 Orthogonal polynomials associated with root systems Orthogonal Polynomials ed P Nevai (Dordrecht: Kluwer) pp 311-18
[29] Ruijsenaars S N M 1987 Commun. Math. Phys. 110191
[30] Ruijsenaars S N M and Schneider H 1986 Ann. Phys. 170370
[31] Hasegawa K 1997 Commun. Math. Phys. 187 289-325
[32] Avan J, Babelon O and Billey E 1996 Commun. Math. Phys. 178281
[33] Felder G and Varchenko A 1997 Elliptic quantum groups and Ruijsenaars model Preprint q-alg/9704005
[34] Hikami K 1996 J. Phys. A: Math. Gen. 292135
[35] Calogero F and Francoise J-P 1996 J. Math. Phys. 372863
[36] Calogero F and van Diejen J F 1996 J. Math. Phys. 374243
[37] Suris Y B 1997 Phys. Lett. A 225253
[38] Arutynov G E, Frolov S A and Medvedev P 1997 J. Phys. A: Math. Gen. 30 5051-63
Arutynov G E, Frolov S A and Medvedev P B 1996 Elliptic Ruijsenaars-Schneider model from the cotangent bundle over the two-dimensional current group Preprint hep-th/9608013
[39] Arutynov G E, Chekhov L O and Frolov S A 1996 R-matrix quantization of the elliptic Ruijsenaars-Schneider model Preprint q-alg/9612032
[40] Cherednik I V 1982 Sov. J. Nucl. Phys. 36320
[41] Zhou Y K and Hou B Y 1989 J. Phys. A: Math. Gen. 225089
[42] Hasegawa K 1994 J. Math. Phys. 356158

